An Efficient Solver for Sparse Linear Systems Based on Rank-Structured Cholesky Factorization

نویسندگان

  • Jeffrey N. Chadwick
  • David S. Bindel
چکیده

Direct factorization methods for the solution of large, sparse linear systems that arise from PDE discretizations are robust, but typically show poor time and memory scalability for large systems. In this paper, we describe an efficient sparse, rank-structured Cholesky algorithm for solution of the positive definite linear system Ax = b when A comes from a discretized partial-differential equation. Our approach combines the efficient memory access patterns of conventional supernodal Cholesky algorithms with the memory efficiency of rank-structured direct solvers. For several test problems arising from PDE discretizations, our method takes less memory than standard sparse Cholesky solvers and less wall-clock time than standard preconditioned iterations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Asynchronous Task-based Fan-Both Sparse Cholesky Solver

Systems of linear equations arise at the heart of many scientific and engineering applications. Many of these linear systems are sparse; i.e., most of the elements in the coefficient matrix are zero. Direct methods based on matrix factorizations are sometimes needed to ensure accurate solutions. For example, accurate solution of sparse linear systems is needed in shift-invert Lanczos to compute...

متن کامل

Robust and Efficient Multifrontal Solver for Large Discretized PDEs

This paper presents a robust structured multifrontal factorization method for large symmetric positive definite sparse matrices arising from the discretization of partial differential equations (PDEs). For PDEs such as 2D and 3D elliptic equations, the method costs roughly O(n) and O(n4/3) flops, respectively. The algorithm takes advantage of a low-rank property in the direct factorization of s...

متن کامل

Robust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices

Given a symmetric positive definite matrix A, we compute a structured approximate Cholesky factorization A ≈ RTR up to any desired accuracy, where R is an upper triangular hierarchically semiseparable (HSS) matrix. The factorization is stable, robust, and efficient. The method compresses off-diagonal blocks with rank-revealing orthogonal decompositions. In the meantime, positive semidefinite te...

متن کامل

Mfrs: an Algorithm for the Structured Multifrontal Solution of Large Sparse Matrices via Randomized Sampling

This paper presents strategies for the development of an efficient algorithm (MFRS) for the direct solutions of large sparse linear systems. The algorithm is based on a structured multifrontal method with randomized sampling. We propose data structures and access schemes for a type of rank structured matrices, called Hierarchically SemiSeparable (HSS) forms. A data tree structure is used for HS...

متن کامل

Scalable Parallel Algorithms for Solving Sparse Systems of Linear Equations∗

We have developed a highly parallel sparse Cholesky factorization algorithm that substantially improves the state of the art in parallel direct solution of sparse linear systems—both in terms of scalability and overall performance. It is a well known fact that dense matrix factorization scales well and can be implemented efficiently on parallel computers. However, it had been a challenge to dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1507.05593  شماره 

صفحات  -

تاریخ انتشار 2013